Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 25: | Line 25: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | | |
+ | :Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | ||
|- | |- | ||
− | |Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | | |
+ | :Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | ||
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | + | | |
+ | :Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | ||
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | |
+ | :Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | ||
|} | |} | ||
Line 39: | Line 43: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |First, we have <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> | + | |First, we have |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> | ||
|- | |- | ||
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | |Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | ||
|- | |- | ||
− | |So, <math style="vertical-align: -5px">F(x)=-G(g(x)).</math> | + | |So, |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -5px">F(x)=-G(g(x)).</math> | ||
|- | |- | ||
|Hence, <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule. | |Hence, <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule. | ||
Line 53: | Line 63: | ||
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x).</math> | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x).</math> | ||
|- | |- | ||
− | | By the Fundamental Theorem of Calculus, | + | |By the Fundamental Theorem of Calculus, |
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math> | ||
+ | |- | ||
+ | |Hence, | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sin(x)}{1+\cos^{10}x}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 63: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 1''' | + | | '''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | | |
+ | : Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | ||
|- | |- | ||
− | |Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | | |
+ | : Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | ||
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 2''' | + | | '''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
− | |Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | + | | |
+ | : Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | ||
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | |
+ | : Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | ||
|- | |- | ||
− | |<math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | + | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:01, 18 April 2016
State the fundamental theorem of calculus, and use this theorem to find the derivative of
Foundations: |
---|
What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of |
|
|
|
Solution:
Step 1: |
---|
The Fundamental Theorem of Calculus, Part 1 |
|
|
The Fundamental Theorem of Calculus, Part 2 |
|
|
Step 2: |
---|
First, we have |
|
Now, let and |
So, |
|
Hence, by the Chain Rule. |
Step 3: |
---|
Now, |
By the Fundamental Theorem of Calculus, |
|
Hence, |
|
Final Answer: |
---|
The Fundamental Theorem of Calculus, Part 1 |
|
|
The Fundamental Theorem of Calculus, Part 2 |
|
|