Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We start by writing <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
+
|We start by writing  
 +
|-
 +
|
 +
::<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
Line 53: Line 56:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
+
|Now, we need to use <math>u</math>-substitution for the first integral.  
 +
|-
 +
|
 +
::Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
 
|-
 
|-
 
|
 
|
Line 68: Line 74:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
+
|For the remaining integral, we also need to use <math>u</math>-substitution.  
 +
|-
 +
|First, we write  
 +
|-
 +
|
 +
::<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
 
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
Line 86: Line 97:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
+
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
 +
|-
 +
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|-
 
|-
 
|Plugging this identity into our integral, we get  
 
|Plugging this identity into our integral, we get  
Line 114: Line 127:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> Also, since this is a definite integral  
+
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
|-
+
|-
|and we are using <math style="vertical-align: 0px">u</math>-substitution, we need to change the bounds of integration. We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>
+
|Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
 +
|-
 +
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, we need to change the bounds of integration.  
 +
|-
 +
|We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
Line 135: Line 152:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
+
|&nbsp;&nbsp; '''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|-
|'''(b)''' <math>\frac{\pi}{2}</math>
+
|&nbsp;&nbsp; '''(b)''' <math>\frac{\pi}{2}</math>
 
|}
 
|}
  
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:10, 18 April 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write
Now, let Then, Thus,

Solution:

(a)

Step 1:  
We start by writing
Since we have
Step 2:  
Now, we need to use -substitution for the first integral.
Let Then, So, we have
Step 3:  
For the remaining integral, we also need to use -substitution.
First, we write
Now, we let Then, So, we get

(b)

Step 1:  
One of the double angle formulas is
Solving for we get
Plugging this identity into our integral, we get
Step 2:  
If we integrate the first integral, we get
Step 3:  
For the remaining integral, we need to use -substitution.
Let Then, and
Also, since this is a definite integral and we are using -substitution, we need to change the bounds of integration.
We have and
So, the integral becomes
Final Answer:  
   (a)
   (b)

Return to Sample Exam