Difference between revisions of "009B Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |How would you integrate <math>2x(x^2+1)^3~dx?</math> | + | |How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math> |
|- | |- | ||
| | | | ||
− | ::You could use <math>u</math>-substitution. Let <math>u=x^2+1.</math> Then, <math>du=2x~dx.</math> Thus, | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus, |
|- | |- | ||
| | | | ||
Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using <math>u</math>-substitution. Let <math>u=x^3.</math> Then, <math>du=3x^2~dx</math> and <math>\frac{du}{3}=x^2~dx.</math> | + | |We proceed using <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> |
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
Line 54: | Line 54: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Again, we proceed using u substitution. Let <math>u=\cos(x).</math> Then, <math>du=-\sin(x)~dx.</math> | + | |Again, we proceed using u substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math> |
|- | |- | ||
|Since this is a definite integral, we need to change the bounds of integration. | |Since this is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
− | |We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math> | + | |We have <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math> |
|} | |} | ||
Revision as of 18:06, 29 March 2016
Compute the following integrals:
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let Then, and |
Therefore, we have |
|
Step 2: |
---|
We integrate to get |
|
(b)
Step 1: |
---|
Again, we proceed using u substitution. Let Then, |
Since this is a definite integral, we need to change the bounds of integration. |
We have and |
Step 2: |
---|
So, we get |
|
Final Answer: |
---|
(a) |
(b) |