Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
|-
 
|-
 
|
 
|
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math>
+
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> Thus,
 
|-
 
|-
 
|
 
|
::Thus, <math>\int \tan x~dx=\int \frac{-1}{u}~du=-\ln(u)+C=-\ln|\cos x|+C.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{-\ln(u)+C}\\
 +
&&\\
 +
& = & \displaystyle{-\ln|\cos x|+C.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 43:
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx.</math>  
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \sec^2x\tan x~dx-\int \tan x~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 46: Line 56:
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^2}{2}-\int \tan x~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\tan^2x}{2}-\int \tan x~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 57: Line 73:
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\tan^2x}{2}+\ln |u|+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\tan^2x}{2}+\ln |\cos x|+C.}
 +
\end{array}</math>
 
|}
 
|}
 +
 
'''(b)'''
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 68: Line 91:
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math>  
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 77: Line 104:
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 90: Line 121:
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{2}.}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 17:14, 29 March 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write
Now, let . Then, Thus,

Solution:

(a)

Step 1:  
We start by writing
Since we have
Step 2:  
Now, we need to use -substitution for the first integral. Let Then, So, we have
Step 3:  
For the remaining integral, we also need to use -substitution. First, we write
Now, we let Then, So, we get

(b)

Step 1:  
One of the double angle formulas is Solving for we get
Plugging this identity into our integral, we get
Step 2:  
If we integrate the first integral, we get
Step 3:  
For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral
and we are using -substitution, we need to change the bounds of integration. We have and
So, the integral becomes
Final Answer:  
(a)
(b)

Return to Sample Exam