Difference between revisions of "009B Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int 2x(x^2+1)^3~dx=\int u^3~du=\frac{u^4}{4}+C=\frac{(x^2+1)^4}{4}+C.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^4}{4}+C}\\ | ||
+ | && \\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)^4}{4}+C.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 37: | Line 43: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C.</math> | + | ::::<math>\begin{array}{rcl} |
+ | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-1}{3}\cos(x^3)+C.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 57: | Line 67: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0.} \\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 17:02, 29 March 2016
Compute the following integrals:
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let Then, and |
Therefore, we have |
|
Step 2: |
---|
We integrate to get |
|
(b)
Step 1: |
---|
Again, we proceed using u substitution. Let Then, |
Since this is a definite integral, we need to change the bounds of integration. |
We have and |
Step 2: |
---|
So, we get |
|
Final Answer: |
---|
(a) |
(b) |