Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
||Recall:
 
||Recall:
 
|-
 
|-
|'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
+
|
 +
::'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
 
|-
 
|-
|'''2.''' See the Riemann sums (insert link) for more information.
+
|
 +
::'''2.''' See the Riemann sums (insert link) for more information.
 
|}
 
|}
  
Line 16: Line 18:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math> So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
+
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math>  
 +
|-
 +
|So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
 
|-
 
|-
 
|
 
|
Line 28: Line 32:
 
|-
 
|-
 
|
 
|
::<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1).</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{4}(\sqrt{2}+1).}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 34: Line 42:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{\pi}{4}(\sqrt{2}+1)</math>
+
|&nbsp;&nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
|-
 
|
 
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:54, 18 April 2016

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  
Recall:
1. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
2. See the Riemann sums (insert link) for more information.

Solution:

Step 1:  
Let Each interval has length
So, the right-endpoint Riemann sum of on the interval is
Step 2:  
Thus, the right-endpoint Riemann sum is
Final Answer:  
  

Return to Sample Exam