Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 42: | Line 42: | ||
::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | ::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 47: | Line 48: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math> | + | |We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
− | | <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math> | + | | <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.</math> |
|} | |} | ||
Line 57: | Line 58: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math> | + | |Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math> | + | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math> |
|- | |- | ||
| | | | ||
Line 73: | Line 74: | ||
|So, if we add the integral on the right to the other side of the equation, we get | |So, if we add the integral on the right to the other side of the equation, we get | ||
|- | |- | ||
− | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math> | + | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math> |
|- | |- | ||
|Now, we divide both sides by 2 to get | |Now, we divide both sides by 2 to get | ||
|- | |- | ||
− | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math> | + | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math> |
|- | |- | ||
− | |Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> | + | |Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math> |
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 09:32, 6 February 2017
Evaluate the integral:
Foundations: |
---|
Integration by parts tells us |
How would you integrate |
|
|
|
|
|
|
|
|
|
Solution:
Step 1: |
---|
We proceed using integration by parts. Let and Then, and |
So, we get |
Step 2: |
---|
Now, we need to use integration by parts again. Let and Then, and |
So, we get |
Step 3: |
---|
Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. |
So, if we add the integral on the right to the other side of the equation, we get |
Now, we divide both sides by 2 to get |
Thus, the final answer is |
Final Answer: |
---|