Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the indefinite and definite integrals.  
 
<span class="exam">Evaluate the indefinite and definite integrals.  
  
::<span class="exam">a) <math>\int x^2 e^x~dx</math>
+
::<span class="exam">a) &nbsp; <math>\int x^2 e^x~dx</math>
::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~dx</math>
+
::<span class="exam">b) &nbsp; <math>\int_{1}^{e} x^3\ln x~dx</math>
  
  
Line 63: Line 63:
 
|Now, we evaluate to get  
 
|Now, we evaluate to get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -17px">\int_{1}^{e} x^3\ln x~dx=\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}</math>.
+
| &nbsp; &nbsp; <math style="vertical-align: -17px">\int_{1}^{e} x^3\ln x~dx=\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}</math>.
 
|-
 
|-
 
|
 
|

Revision as of 08:54, 6 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
Integration by parts tells us that
How would you integrate
You could use integration by parts.
Let and Then, and
Thus,

Solution:

(a)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
   .
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
Building on the previous step, we have
   .

(b)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
   .
Step 2:  
Now, we evaluate to get
    .
Final Answer:  
(a)  
(b)  

Return to Sample Exam