Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 17: | Line 17: | ||
|- | |- | ||
| | | | ||
| − | ::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx</math> | + | ::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
| | | | ||
| − | ::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math> | + | ::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> |
|- | |- | ||
| | | | ||
| − | ::Thus, <math>\int \tan x~dx=\int \frac{-1}{u}~du=-\ln(u)+C=-\ln|\cos x|+C</math> | + | ::Thus, <math>\int \tan x~dx=\int \frac{-1}{u}~du=-\ln(u)+C=-\ln|\cos x|+C.</math> |
|} | |} | ||
| Line 32: | Line 32: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx</math> | + | |We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> |
|- | |- | ||
| − | |Since <math>\tan^2x=\sec^2x-1</math> | + | |Since <math>\tan^2x=\sec^2x-1,</math> we have |
|- | |- | ||
| | | | ||
| − | ::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx</math> | + | ::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx.</math> |
|} | |} | ||
| Line 43: | Line 43: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x)</math> | + | |Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x).</math> Then, <math>du=\sec^2x~dx.</math> So, we have |
|- | |- | ||
| | | | ||
| − | ::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx</math> | + | ::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx.</math> |
|} | |} | ||
| Line 52: | Line 52: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx</math> | + | |For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
| − | |Now, we let <math>u=\cos x</math> | + | |Now, we let <math>u=\cos x.</math> Then, <math>du=-\sin x~dx.</math> So, we get |
|- | |- | ||
| | | | ||
| − | ::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math> | + | ::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C.</math> |
|} | |} | ||
'''(b)''' | '''(b)''' | ||
| Line 63: | Line 63: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math> | + | |One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x).</math> Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> |
|- | |- | ||
|Plugging this identity into our integral, we get | |Plugging this identity into our integral, we get | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx</math> | + | ::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math> |
|} | |} | ||
| Line 77: | Line 77: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx</math> | + | ::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math> |
|} | |} | ||
| Line 83: | Line 83: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=2x</math> | + | |For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=2x.</math> Then, <math>du=2~dx</math> and <math>\frac{du}{2}=dx.</math> Also, since this is a definite integral |
|- | |- | ||
| − | |and we are using <math>u</math>-substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi</math> | + | |and we are using <math>u</math>-substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi.</math> |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math> | + | ::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}.</math> |
|} | |} | ||
Revision as of 16:44, 29 March 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
| Foundations: |
|---|
| Recall the trig identities: |
| 1. |
| 2. |
| How would you integrate |
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We start by writing |
| Since we have |
|
|
| Step 2: |
|---|
| Now, we need to use -substitution for the first integral. Let Then, So, we have |
|
|
| Step 3: |
|---|
| For the remaining integral, we also need to use -substitution. First, we write |
| Now, we let Then, So, we get |
|
|
(b)
| Step 1: |
|---|
| One of the double angle formulas is Solving for , we get |
| Plugging this identity into our integral, we get |
|
|
| Step 2: |
|---|
| If we integrate the first integral, we get |
|
|
| Step 3: |
|---|
| For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral |
| and we are using -substitution, we need to change the bounds of integration. We have and |
| So, the integral becomes |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |