Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Divide the interval <math>[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math>y=\sin (x)</math>
+
<span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math>
  
  
Line 16: Line 16:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math>f(x)=\sin(x)</math>. Each interval has length <math>\frac{\pi}{4}</math>. So, the right-endpoint Riemann sum of <math>f(x)</math> on the interval <math>[0,\pi]</math> is
+
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math> So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
 
|-
 
|-
|<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg)</math>.
+
|
 +
::<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
 
|}
 
|}
  
Line 26: Line 27:
 
|Thus, the right-endpoint Riemann sum is  
 
|Thus, the right-endpoint Riemann sum is  
 
|-
 
|-
|<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1)</math>
+
|
 +
::<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1).</math>
 
|}
 
|}
  

Revision as of 16:31, 29 March 2016

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  
Recall:
1. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
2. See the Riemann sums (insert link) for more information.

Solution:

Step 1:  
Let Each interval has length So, the right-endpoint Riemann sum of on the interval is
Step 2:  
Thus, the right-endpoint Riemann sum is
Final Answer:  

Return to Sample Exam