Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' <math>\sec^2x=tan^2x+1</math> | + | |'''1.''' <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
− | |'''2.''' <math>\int \sec^2 x~dx=\tan x+C</math> | + | |'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> |
|- | |- | ||
− | |How would you integrate <math>\int \sec^2(x)\tan(x)~dx</math> | + | |How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> |
|- | |- | ||
| | | | ||
− | ::You could use <math>u</math>-substitution. Let <math>u=\tan x</math> | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
| | | | ||
− | ::Thus, <math>\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C</math> | + | ::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> |
|} | |} | ||
Revision as of 16:18, 29 March 2016
Evaluate the integral:
Foundations: |
---|
Recall: |
1. |
2. |
How would you integrate |
|
|
Solution:
Step 1: |
---|
First, we write . |
Using the trig identity , we have . |
Plugging in the last identity into one of the , we get |
, |
using the identity again on the last equality. |
Step 2: |
---|
So, we have . |
For the first integral, we need to use -substitution. Let . Then, . |
So, we have |
. |
Step 3: |
---|
We integrate to get |
. |
Final Answer: |
---|