Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How would you integrate <math>\int (2x+1)\sqrt{x^2+x}~dx</math>?
+
|How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=x^2+x</math>. Then, <math>du=(2x+1)dx</math>.
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math>\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C</math>.
+
::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math>
 
|}
 
|}
  

Revision as of 16:11, 29 March 2016

Evaluate

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes  .
Step 2:  
We now have:
   .
So, we have
   .
Final Answer:  
(a)  
(b)  

Return to Sample Exam