Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis.
+
<span class="exam"> This problem has three parts:
  
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
+
::<span class="exam">a) State the Fundamental Theorem of Calculus.
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit.
 
  
 +
::<span class="exam">b) Compute &thinsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math>
 +
 +
::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math>
  
  
Line 9: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math>
 
|-
 
|-
|'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
+
|
 +
::Part 1 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
 
|-
 
|-
|'''2.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
+
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
|-
 
|-
|'''3.''' See the Riemann sums (insert link) for more information.
+
|
 +
::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
 
|}
 
|}
  
Line 21: Line 25:
  
 
'''(a)'''
 
'''(a)'''
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math>.  Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is
+
|The Fundamental Theorem of Calculus has two parts.  
 
|-
 
|-
| &nbsp;&nbsp; <math>1\cdot (f(1)+f(2)+f(3)+f(4))</math>. 
+
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 +
|-
 +
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
|}
 
|}
  
Line 34: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Thus, the left-endpoint Riemann sum is
+
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
| &nbsp;&nbsp; <math>1\cdot (f(1)+f(2)+f(3)+f(4))=\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)=\frac{205}{144}</math>.
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
 
|-
 
|-
|The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S</math>.
+
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|}
 
|}
 +
'''(b)'''
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math>.
+
|Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math style="vertical-align: -5px">F'(x)</math>.
 +
|-
 +
|Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math>.
 
|-
 
|-
|The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}</math>.
+
|Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|
+
|If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''.
 +
|-
 +
|Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x))</math>, we have <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x))</math>.
 +
|}
 +
 
 +
'''(c)'''
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|-
|
+
| &nbsp;&nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math>
 
|}
 
|}
  
Line 57: Line 86:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, the left-endpoint Riemann sum is
+
|So, we get
 
|-
 
|-
| &nbsp;&nbsp; <math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg)</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>.
 
|-
 
|-
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. 
+
|
|-
 
|So, the area of <math style="vertical-align: 0px">S</math> is equal to <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)</math>.
 
 
|}
 
|}
  
Line 69: Line 96:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' The left-endpoint Riemann sum is <math style="vertical-align: -20px">\frac{205}{144}</math>, which overestimates the area of <math style="vertical-align: 0px">S</math>.  
+
|'''(a)'''
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 1'''
 +
|-
 +
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 +
|-
 +
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 2'''
 +
|-
 +
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
 +
|-
 +
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 +
|-
 +
|'''(b)''' &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>.
 
|-
 
|-
|'''(b)''' Using left-endpoint Riemann sums: <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)</math>
+
|'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>.
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:16, 5 February 2017

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute  
c) Evaluate


Foundations:  
1. What does Part 1 of the Fundamental Theorem of Calculus say about
Part 1 of the Fundamental Theorem of Calculus says that
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants?
Part 2 of the Fundamental Theorem of Calculus says that where is any antiderivative of

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .

(b)

Step 1:  
Let . The problem is asking us to find .
Let and .
Then, .
Step 2:  
If we take the derivative of both sides of the last equation, we get by the Chain Rule.
Step 3:  
Now, and by the Fundamental Theorem of Calculus, Part 1.
Since , we have .

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
  
Step 2:  
So, we get
   .
Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(b)   .
(c) .

Return to Sample Exam