Difference between revisions of "009A Sample Final 1, Problem 4"
Jump to navigation
Jump to search
(→1) |
(→2) |
||
| Line 24: | Line 24: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we compute <math>\frac{dy}{dx}.</math> We get | + | |First, we compute  <math style="vertical-align: -13px">\frac{dy}{dx}.</math> We get |
|- | |- | ||
| | | | ||
| − | ::<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x).</math> | + | ::<math>\frac{dy}{dx}\,=\,2x-\sin(\pi(x^2+1))(2\pi x).</math> |
|} | |} | ||
| Line 35: | Line 35: | ||
|To find the equation of the tangent line, we first find the slope of the line. | |To find the equation of the tangent line, we first find the slope of the line. | ||
|- | |- | ||
| − | |Using <math style="vertical-align: -3px">x_0=1</math> in the formula for <math style="vertical-align: -12px">\frac{dy}{dx}</math> from Step 1, we get | + | |Using <math style="vertical-align: -3px">x_0=1</math>  in the formula for  <math style="vertical-align: -12px">\frac{dy}{dx}</math>  from Step 1, we get |
|- | |- | ||
| | | | ||
| − | ::<math>m=2(1)-\sin(2\pi)2\pi=2.</math> | + | ::<math>m=2(1)-\sin(2\pi)2\pi\,=\,2.</math> |
|- | |- | ||
| − | |To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math> into the equation given. | + | |To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math>  into the equation given. |
|- | |- | ||
| − | |So, we have <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math> | + | |So, we have  <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math> |
|- | |- | ||
| − | |Thus, the equation of the tangent line is <math style="vertical-align: -5px">y=2(x-1)+2.</math> | + | |Thus, the equation of the tangent line is  <math style="vertical-align: -5px">y=2(x-1)+2.</math> |
|} | |} | ||
| + | |||
== 1 == | == 1 == | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 11:44, 4 March 2016
If
compute and find the equation for the tangent line at . You may leave your answers in point-slope form.
| Foundations: |
|---|
| 1. What two pieces of information do you need to write the equation of a line? |
|
| 2. What does the Chain Rule state? |
|
Solution:
2
| Step 1: |
|---|
| First, we compute We get |
|
|
| Step 2: |
|---|
| To find the equation of the tangent line, we first find the slope of the line. |
| Using in the formula for from Step 1, we get |
|
|
| To get a point on the line, we plug in into the equation given. |
| So, we have |
| Thus, the equation of the tangent line is |
1
| Final Answer: |
|---|