Difference between revisions of "009A Sample Final 1, Problem 3"
Jump to navigation
Jump to search
(→3) |
|||
Line 4: | Line 4: | ||
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math> | <span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math> | ||
− | + | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
Line 27: | Line 27: | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
'''(a)''' | '''(a)''' | ||
Line 64: | Line 63: | ||
|} | |} | ||
− | |||
'''(b)''' | '''(b)''' | ||
Line 93: | Line 91: | ||
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 11:36, 4 March 2016
Find the derivatives of the following functions.
a)
b)
Foundations: |
---|
For functions and , recall |
Chain Rule: |
Quotient Rule: |
Trig Derivatives: |
Solution:
(a)
Step 1: |
---|
Using the Chain Rule, we have |
Step 2: |
---|
Now, we need to calculate |
To do this, we use the Quotient Rule. So, we have |
(b)
Step 1: |
---|
Again, we need to use the Chain Rule. We have |
|
Step 2: |
---|
We need to calculate |
We use the Chain Rule again to get |
|
Final Answer: |
---|
(a) |
(b) |