Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
  
 
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
 
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
== 1 ==
+
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 27: Line 27:
 
'''Solution:'''
 
'''Solution:'''
  
== 2 ==
 
 
'''(a)'''
 
'''(a)'''
  
Line 64: Line 63:
 
|}
 
|}
  
== 3 ==
 
 
'''(b)'''
 
'''(b)'''
  
Line 93: Line 91:
 
|}
 
|}
  
== 4 ==
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 11:36, 4 March 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
For functions   and , recall
 
Chain Rule: 
 
Quotient Rule: 
 
Trig Derivatives: 
 

Solution:

(a)

Step 1:  
Using the Chain Rule, we have

Step 2:  
Now, we need to calculate  
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate 
We use the Chain Rule again to get
Final Answer:  
(a)
(b)

Return to Sample Exam