Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|For functions <math style="vertical-align: -3px">f(x),g(x)</math>, recall
+
|For functions <math style="vertical-align: -5px">f(x)</math> and <math style="vertical-align: -5px">g(x)</math>, recall
 
|-
 
|-
|'''Chain Rule''' <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
+
|&nbsp;
 
|-
 
|-
|'''Quotient Rule''' <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
+
|'''Chain Rule:'''&nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|-
|'''Trig derivatives''' <math>\frac{d}{dx}(\sin x)=\cos x,~\frac{d}{dx}(\tan x)=\sec^2 x</math>
+
|&nbsp;
 +
|-
 +
|'''Quotient Rule:'''&nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 +
|-
 +
|&nbsp;
 +
|-
 +
|'''Trig Derivatives:'''&nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x</math>
 +
|-
 +
|&nbsp;
 
|}
 
|}
  
 
'''Solution:'''
 
'''Solution:'''
 +
 
== 2 ==
 
== 2 ==
 
'''(a)'''
 
'''(a)'''

Revision as of 11:31, 4 March 2016

Find the derivatives of the following functions.

a)

b)

1

Foundations:  
For functions and , recall
 
Chain Rule: 
 
Quotient Rule: 
 
Trig Derivatives: 
 

Solution:

2

(a)

Step 1:  
Using the Chain Rule, we have
Step 2:  
Now, we need to calculate
To do this, we use the Quotient Rule. So, we have

3

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate
We use the Chain Rule again to get

4

Final Answer:  
(a)
(b)

Return to Sample Exam