Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
(→3) |
|||
Line 11: | Line 11: | ||
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>. | <span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>. | ||
− | + | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
Line 24: | Line 24: | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
'''(a)''' | '''(a)''' | ||
Line 68: | Line 67: | ||
|} | |} | ||
− | |||
'''(b)''' | '''(b)''' | ||
Line 121: | Line 119: | ||
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 11:26, 4 March 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
Foundations: |
---|
Recall: |
1. is continuous at if |
2. The definition of derivative for is |
Solution:
(a)
Step 1: |
---|
We first calculate We have |
|
Step 2: |
---|
Now, we calculate We have |
|
Step 3: |
---|
Now, we calculate We have |
|
Since is continuous. |
(b)
Step 1: |
---|
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Since |
is differentiable at |
Final Answer: |
---|
(a) Since is continuous. |
(b) Since |
|