Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
(→4) |
(→1) |
||
| Line 17: | Line 17: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: | + | |'''1.''' <math style="vertical-align: -5px">f(x)</math>  is continuous at <math style="vertical-align: 0px">x=a</math>  if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> |
|- | |- | ||
| − | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> | + | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math>  is  <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
| + | |||
== 2 == | == 2 == | ||
'''(a)''' | '''(a)''' | ||
Revision as of 11:23, 4 March 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
1
| Foundations: |
|---|
| Recall: |
| 1. is continuous at if |
| 2. The definition of derivative for is |
Solution:
2
(a)
| Step 1: |
|---|
| We first calculate We have |
|
|
| Step 2: |
|---|
| Now, we calculate We have |
|
|
| Step 3: |
|---|
| Now, we calculate We have |
|
|
| Since is continuous. |
3
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
| Step 3: |
|---|
| Since |
| is differentiable at |
4
| Final Answer: |
|---|
| (a) Since is continuous. |
| (b) Since |
|