Difference between revisions of "009A Sample Final 1, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)   | 
				|||
| Line 1: | Line 1: | ||
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.  | <span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.  | ||
| − | <span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>  | + | <span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>  | 
| − | <span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>  | + | <span class="exam">(b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>  | 
| − | <span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>  | + | <span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>  | 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
Revision as of 17:42, 18 February 2017
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a)
(b)
(c)
| Foundations: | 
|---|
| Recall: | 
| L'Hôpital's Rule | 
| Suppose that and are both zero or both | 
  | 
  | 
Solution:
(a)
| Step 1: | 
|---|
| We begin by factoring the numerator. We have | 
| 
 | 
| So, we can cancel in the numerator and denominator. Thus, we have | 
| 
 | 
| Step 2: | 
|---|
| Now, we can just plug in to get | 
| 
 | 
(b)
| Step 1: | 
|---|
| We proceed using L'Hôpital's Rule. So, we have | 
| 
 | 
| Step 2: | 
|---|
| This limit is | 
(c)
| Step 1: | 
|---|
| We have | 
| 
 | 
| Since we are looking at the limit as goes to negative infinity, we have | 
| So, we have | 
| 
 | 
| Step 2: | 
|---|
| We simplify to get | 
| 
 | 
| So, we have | 
| 
 | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) |