Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
(→Temp5) |
(→Temp4) |
||
| Line 84: | Line 84: | ||
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | ||
|- | |- | ||
| − | |Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: - | + | |Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| | | | ||
| − | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | + | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> |
|} | |} | ||
| Line 98: | Line 98: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | + | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
| Line 105: | Line 105: | ||
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | ||
|} | |} | ||
| + | |||
== Temp5 == | == Temp5 == | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 11:17, 4 March 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Temp1
| Foundations: |
|---|
| Recall: |
| L'Hôpital's Rule |
| Suppose that and are both zero or both |
|
|
Solution:
Temp2
(a)
| Step 1: |
|---|
| We begin by factoring the numerator. We have |
|
|
| So, we can cancel in the numerator and denominator. Thus, we have |
|
|
| Step 2: |
|---|
| Now, we can just plug in to get |
|
|
Temp3
(b)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
|
| Step 2: |
|---|
| This limit is |
Temp4
(c)
| Step 1: |
|---|
| We have |
|
|
| Since we are looking at the limit as goes to negative infinity, we have |
| So, we have |
|
|
| Step 2: |
|---|
| We simplify to get |
|
|
| So, we have |
|
|
Temp5
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |