Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
 
|-
 
|-
|So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have
+
|So, we can cancel <math style="vertical-align: -2px">x+3</math>&thinsp; in the numerator and denominator. Thus, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
 
|}
 
|}
  
Line 45: Line 45:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we can just plug in <math style="vertical-align: 0px">x=-3</math> to get  
+
|Now, we can just plug in <math style="vertical-align: -1px">x=-3</math>&thinsp; to get  
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math>
+
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math>
 
|}
 
|}
 +
 
== Temp3 ==
 
== Temp3 ==
 
'''(b)'''
 
'''(b)'''

Revision as of 11:13, 4 March 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Temp1

Foundations:  
Recall:
L'Hôpital's Rule
Suppose that   and   are both zero or both
If   is finite or 
then

Solution:

Temp2

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel   in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in   to get

Temp3

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is

Temp4

(c)

Step 1:  
We have
Since we are looking at the limit as goes to negative infinity, we have
So, we have
Step 2:  
We simplify to get
So, we have

Temp5

Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam