Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
 
::::::<math>r=1+\sin\theta</math>
 
::::::<math>r=1+\sin\theta</math>
  
<span class="exam">a) Sketch the curve.
+
::<span class="exam">a) Sketch the curve.
  
<span class="exam">b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>.
+
::<span class="exam">b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>.
  
<span class="exam">c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>.
+
::<span class="exam">c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 46: Line 46:
 
::<math>\frac{dr}{d\theta}=\cos\theta.</math>
 
::<math>\frac{dr}{d\theta}=\cos\theta.</math>
 
|-
 
|-
|Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math>
+
|Hence,  
 +
|-
 +
|
 +
::<math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math>
 
|}
 
|}
  
Line 99: Line 102:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' See Step 1 above for the graph.
+
|&nbsp;&nbsp; '''(a)''' See Step 1 above for the graph.
 
|-
 
|-
|'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
+
|&nbsp;&nbsp; '''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
 
|-
 
|-
|'''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>
+
|&nbsp;&nbsp; '''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:38, 18 April 2016

A curve is given in polar coordinates by

a) Sketch the curve.
b) Compute .
c) Compute .
Foundations:  
How do you calculate for a polar curve
Since we have

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
Since
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have
So, first we need to find
We have
since and
Step 2:  
Now, using the resulting formula for we get
Final Answer:  
   (a) See Step 1 above for the graph.
   (b)
   (c)

Return to Sample Exam