Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math>
 
::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math>
  
<span class="exam">a) Find the radius of convergence of the power series.
+
::<span class="exam">a) Find the radius of convergence of the power series.
  
<span class="exam">b) Determine the interval of convergence of the power series.
+
::<span class="exam">b) Determine the interval of convergence of the power series.
  
<span class="exam">c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>.
+
::<span class="exam">c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 14: Line 14:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
+
|
 +
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
+
|
 +
::'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
|-
 
|-
 
|
 
|
::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
+
:::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
 
|}
 
|}
  
Line 100: Line 102:
 
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x.</math>
 
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math>
+
|So, we have  
 +
|-
 +
|
 +
::<math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math>
 
|-
 
|-
 
|Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math>
 
|Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math>
Line 108: Line 113:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math style="vertical-align: -3px">1</math>
+
|&nbsp;&nbsp; '''(a)''' <math style="vertical-align: -3px">1</math>
 
|-
 
|-
|'''(b)''' <math style="vertical-align: -3px">(-1,1)</math>
+
|&nbsp;&nbsp; '''(b)''' <math style="vertical-align: -3px">(-1,1)</math>
 
|-
 
|-
|'''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math>
+
|&nbsp;&nbsp; '''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:35, 18 April 2016

Let

a) Find the radius of convergence of the power series.
b) Determine the interval of convergence of the power series.
c) Obtain an explicit formula for the function .
Foundations:  
Recall:
1. Ratio Test Let be a series and Then,
If the series is absolutely convergent.
If the series is divergent.
If the test is inconclusive.
2. After you find the radius of convergence, you need to check the endpoints of your interval
for convergence since the Ratio Test is inconclusive when

Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have
Step 2:  
Thus, we have and the radius of convergence of this series is

(b)

Step 1:  
From part (a), we know the series converges inside the interval
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For the series becomes which diverges by the Divergence Test.
Step 3:  
For the series becomes which diverges by the Divergence Test.
Thus, the interval of convergence is

(c)

Step 1:  
Recall that we have the geometric series formula for
Now, we take the derivative of both sides of the last equation to get
Step 2:  
Now, we multiply the last equation in Step 1 by
So, we have
Thus,
Final Answer:  
   (a)
   (b)
   (c)

Return to Sample Exam