Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
+
|
 +
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
|'''2.''' If a series absolutely converges, then it also converges.  
+
|
 +
::'''2.''' If a series absolutely converges, then it also converges.  
 
|}
 
|}
  
Line 67: Line 69:
 
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|-
 
|-
|First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
+
|First, we write the limit as  
 +
|-
 +
|
 +
::<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|-
 
|Now, we use L'Hopital's Rule to get  
 
|Now, we use L'Hopital's Rule to get  
Line 100: Line 105:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|The series converges.
+
|&nbsp;&nbsp; The series converges.
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:29, 18 April 2016

Determine whether the following series converges or diverges.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
Foundations:  
Recall:
1. Ratio Test Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_n} be a series and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.} Then,
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L<1,} the series is absolutely convergent.
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L>1,} the series is divergent.
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=1,} the test is inconclusive.
2. If a series absolutely converges, then it also converges.

Solution:

Step 1:  
We proceed using the ratio test.
We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n!}{n!}\frac{n^n}{(n+1)^{n+1}}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n^n}{(n+1)(n+1)^n}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\ \end{array}}
Step 2:  
Now, we continue to calculate the limit from Step 1. We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}e^{\ln(\frac{n}{n+1})^n}}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\ &&\\ & = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}.}\\ \end{array}}
Step 3:  
Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).}
First, we write the limit as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}
Now, we use L'Hopital's Rule to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n(n+1)}(-n^2)}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ &&\\ & = & \displaystyle{-1.}\\ \end{array}}
Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.}
Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.
Final Answer:  
   The series converges.

Return to Sample Exam