Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
+
|
 +
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
|'''2.''' If a series absolutely converges, then it also converges.  
+
|
 +
::'''2.''' If a series absolutely converges, then it also converges.  
 
|}
 
|}
  
Line 67: Line 69:
 
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|-
 
|-
|First, we write the limit as <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
+
|First, we write the limit as  
 +
|-
 +
|
 +
::<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|-
 
|Now, we use L'Hopital's Rule to get  
 
|Now, we use L'Hopital's Rule to get  
Line 100: Line 105:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|The series converges.
+
|&nbsp;&nbsp; The series converges.
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:29, 18 April 2016

Determine whether the following series converges or diverges.

Foundations:  
Recall:
1. Ratio Test Let be a series and Then,
If the series is absolutely convergent.
If the series is divergent.
If the test is inconclusive.
2. If a series absolutely converges, then it also converges.

Solution:

Step 1:  
We proceed using the ratio test.
We have
Step 2:  
Now, we continue to calculate the limit from Step 1. We have
Step 3:  
Now, we need to calculate
First, we write the limit as
Now, we use L'Hopital's Rule to get
Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have
Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.
Final Answer:  
   The series converges.

Return to Sample Exam