Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the sum of the following series:  
 
<span class="exam"> Find the sum of the following series:  
  
<span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math>
+
::<span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math>
  
<span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
+
::<span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
+
|
 +
::'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
+
:::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
 
|-
 
|-
|'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
+
|
 +
::'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|-
 
|-
 
|
 
|
::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
+
:::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
|}
  
Line 44: Line 46:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{\frac{e+2}{e}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{e}{e+2}.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 56: Line 64:
 
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
|-
 
|-
|Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
+
|Then,  
 +
|-
 +
|
 +
::<math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
 
|}
 
|}
  
Line 65: Line 76:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}.</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}\\
 +
\end{array}</math>
 
|}
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>\frac{e}{e+2}</math>
+
|&nbsp;&nbsp; '''(a)''' <math>\frac{e}{e+2}</math>
 
|-
 
|-
|'''(b)''' <math>\frac{1}{2}</math>
+
|&nbsp;&nbsp; '''(b)''' <math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:26, 18 April 2016

Find the sum of the following series:

a)
b)
Foundations:  
Recall:
1. For a geometric series with
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,
Step 2:  
Thus,
Final Answer:  
   (a)
   (b)

Return to Sample Exam