Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
  
 
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
 
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
 
+
== 1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
Line 18: Line 18:
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== 2 ==
 
'''(a)'''
 
'''(a)'''
  
Line 54: Line 54:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 
+
== 3 ==
 
'''(b)'''
 
'''(b)'''
  
Line 82: Line 82:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 
+
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 11:27, 4 March 2016

Find the derivatives of the following functions.

a)

b)

1

Foundations:  
For functions , recall
Chain Rule
Quotient Rule
Trig derivatives

Solution:

2

(a)

Step 1:  
Using the Chain Rule, we have
Step 2:  
Now, we need to calculate
To do this, we use the Quotient Rule. So, we have

3

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate
We use the Chain Rule again to get

4

Final Answer:  
(a)
(b)

Return to Sample Exam