Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)</math>?
+
|How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math>
 
|-
 
|-
 
|
 
|
::Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta)</math>, we have
+
::Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have
 
|-
 
|-
 
|
 
|

Revision as of 10:50, 1 March 2016

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin\theta}

a) Sketch the curve.

b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}} .

c) Compute .

Foundations:  
How do you calculate for a polar curve
Since we have

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
Since
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have
So, first we need to find
We have
since and
Step 2:  
Now, using the resulting formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta},} we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.}
Final Answer:  
(a) See Step 1 above for the graph.
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}}

Return to Sample Exam