Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math>.
+
::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|}
 
|}
  
Line 61: Line 61:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math>, the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is  
+
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is  
 
|
 
|
 
|-
 
|-

Revision as of 11:44, 1 March 2016

Find the Taylor polynomial of degree 4 of at .

Foundations:  
The Taylor polynomial of at is
where

Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Since the Taylor polynomial of degree 4 of is
Final Answer:  

Return to Sample Exam