Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 80: Line 80:
 
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\
 
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}\\
+
& = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 97: Line 97:
 
|If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>.
 
|If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>.
 
|-
 
|-
|If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get <math style="vertical-align: -14px">\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>.
+
|If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get &thinsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>.
 
|-
 
|-
|So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
+
|So, in summation, we have&thinsp; <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
 
|}
 
|}
  
Line 111: Line 111:
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
+
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 120: Line 120:
 
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx</math>.
+
|Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2\,dx</math> and&thinsp; <math style="vertical-align: -14px">\frac{du}{2}=dx</math>.
 
|-
 
|-
 
|Thus, our final integral becomes
 
|Thus, our final integral becomes
Line 130: Line 130:
 
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 
&&\\
 
&&\\
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}\\
+
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 136: Line 136:
 
|-
 
|-
 
|
 
|
::<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
+
::<math>\int \frac{2x^2+1}{2x^2+x}~dx\,=\,x+\ln x-\frac{3}{2}\ln (2x+1) +C.</math>
 
|}
 
|}
 +
 
== 4 ==
 
== 4 ==
 
'''(c)'''
 
'''(c)'''

Revision as of 23:55, 25 February 2016

Compute the following integrals.

a)

b)

c)

Foundations:  
Recall:
1. Integration by parts tells us that .
2. Through partial fraction decomposition, we can write the fraction    for some constants .
3. We have the Pythagorean identity .

Solution:

(a)

Step 1:  
We first distribute to get
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

3

(b)

Step 1:  
First, we add and subtract from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by ,
we get .
If we let , the last equation becomes .
If we let , then we get  . Thus, .
So, in summation, we have  .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and  .
Thus, our final integral becomes
Therefore, the final answer is

4

(c)

Step 1:  
First, we write .
Using the identity , we get .
If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, .
So we have

5

Final Answer:  
(a)
(b)
(c)

Return to Sample Exam