Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
(→3) |
|||
Line 80: | Line 80: | ||
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | & = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | + | & = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 97: | Line 97: | ||
|If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>. | |If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>. | ||
|- | |- | ||
− | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get <math style="vertical-align: - | + | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get  <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>. |
|- | |- | ||
− | |So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>. | + | |So, in summation, we have  <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>. |
|} | |} | ||
Line 111: | Line 111: | ||
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | + | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 120: | Line 120: | ||
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du= | + | |Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2\,dx</math> and  <math style="vertical-align: -14px">\frac{du}{2}=dx</math>. |
|- | |- | ||
|Thus, our final integral becomes | |Thus, our final integral becomes | ||
Line 130: | Line 130: | ||
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | & = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}\\ | + | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}.\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 136: | Line 136: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> | + | ::<math>\int \frac{2x^2+1}{2x^2+x}~dx\,=\,x+\ln x-\frac{3}{2}\ln (2x+1) +C.</math> |
|} | |} | ||
+ | |||
== 4 == | == 4 == | ||
'''(c)''' | '''(c)''' |
Revision as of 23:55, 25 February 2016
Compute the following integrals.
a)
b)
c)
Foundations: |
---|
Recall: |
1. Integration by parts tells us that . |
2. Through partial fraction decomposition, we can write the fraction for some constants . |
3. We have the Pythagorean identity . |
Solution:
(a)
Step 1: |
---|
We first distribute to get |
|
Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
Let and . Then, and . |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
3
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since , we let . |
Multiplying both sides of the last equation by , |
we get . |
If we let , the last equation becomes . |
If we let , then we get . Thus, . |
So, in summation, we have . |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let . Then, and . |
Thus, our final integral becomes |
|
Therefore, the final answer is |
|
4
(c)
Step 1: |
---|
First, we write . |
Using the identity , we get . |
If we use this identity, we have |
. |
Step 2: |
---|
Now, we proceed by -substitution. Let . Then, . |
So we have |
|
5
Final Answer: |
---|
(a) |
(b) |
(c) |