Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 44: Line 44:
 
|-
 
|-
 
|
 
|
::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
+
::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}\,dx.</math>
 
|}
 
|}
  
Line 64: Line 64:
 
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
+
& = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 79: Line 79:
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\
+
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Using L'Hopital's Rule, we get  
+
|Using L'Hôpital's Rule, we get  
 
|-
 
|-
 
|
 
|
Line 90: Line 90:
 
& = & \displaystyle{0+1}\\
 
& = & \displaystyle{0+1}\\
 
&&\\
 
&&\\
& = & \displaystyle{1}\\
+
& = & \displaystyle{1}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|
 
|
 
|}
 
|}
 +
 
== 3 ==
 
== 3 ==
 
'''(b)'''
 
'''(b)'''

Revision as of 23:06, 25 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
1. How could you write so that you can integrate?
You can write
2. How could you write  ?
The problem is that   is not continuous at .
So, you can write .
3. How would you integrate  ?
You can use integration by parts.
Let and .

Solution:

2

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hôpital's Rule, we get

3

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
.
Step 2:  
We integrate to get

4

Final Answer:  
(a)
(b)

Return to Sample Exam