Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we calculate <math>\frac{dy}{dx}</math>.
+
|First, we calculate&thinsp; <math>\frac{dy}{dx}.</math>  
 
|-
 
|-
 
|Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>.
 
|Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>.
Line 42: Line 42:
 
|-
 
|-
 
|
 
|
::<math>L=\int_0^{\frac{\pi}{3}} \sqrt{1+(-\tan x)^2}~dx</math>.
+
::<math>L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx</math>.
 
|}
 
|}
  
Line 52: Line 52:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
L & = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{1+\tan^2 x}~dx}\\
+
L & = & \displaystyle{\int_0^{\pi/3} \sqrt{1+\tan^2 x}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{\sec^2x}~dx}\\
+
& = & \displaystyle{\int_0^{\pi/3} \sqrt{\sec^2x}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sec x ~dx}\\
+
& = & \displaystyle{\int_0^{\pi/3} \sec x ~dx}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 75: Line 75:
 
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\
 
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\ln (2+\sqrt{3})}
+
& = & \displaystyle{\ln (2+\sqrt{3})}.
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|
 
|
 
|}
 
|}
 +
 
== Temp3 ==
 
== Temp3 ==
 
'''(b)'''
 
'''(b)'''

Revision as of 22:37, 25 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
Recall:
1. The formula for the length of a curve where is
2.
3. The surface area of a function rotated about the -axis is given by
, where

Solution:

Temp2

(a)

Step 1:  
First, we calculate 
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:
Step 3:  
Finally,

Temp3

(b)

Step 1:  
We start by calculating   .
Since .
Using the formula given in the Foundations section, we have
Step 2:  
Now, we have
We proceed by using trig substitution. Let . Then, .
So, we have
Step 3:  
Now, we use -substitution. Let . Then, .
So, the integral becomes
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have

Temp4

Final Answer:  
(a)  
(b)  

Return to Sample Exam