Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 86: Line 86:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We start by calculating <math>\frac{dy}{dx}</math>.  
+
|We start by calculating&thinsp; <math>\frac{dy}{dx}</math>&thinsp;.  
 
|-
 
|-
|Since <math style="vertical-align: -12px">y=1-x^2,~ \frac{dy}{dx}=-2x</math>.
+
|Since <math style="vertical-align: -13px">y=1-x^2,~ \frac{dy}{dx}=-2x</math>.
 
|-
 
|-
 
|Using the formula given in the Foundations section, we have
 
|Using the formula given in the Foundations section, we have
 
|-
 
|-
 
|
 
|
::<math>S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx</math>.
+
::<math>S\,=\,\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx.</math>
 
|}
 
|}
  
Line 99: Line 99:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx</math>
+
|Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|-
 
|-
|We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta d\theta</math>.
+
|We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta</math>.
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 109: Line 109:
 
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\
 
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\
 
&&\\
 
&&\\
& = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}\\
+
& = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 116: Line 116:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta d\theta</math>.  
+
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta</math>.  
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
Line 128: Line 128:
 
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\
 
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}\\
+
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 145: Line 145:
 
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\
 
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}\\
+
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
 
== Temp4 ==
 
== Temp4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 22:34, 25 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
Recall:
1. The formula for the length of a curve where is
2.
3. The surface area of a function rotated about the -axis is given by
, where

Solution:

Temp2

(a)

Step 1:  
First, we calculate .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:
Step 3:  
Finally,

Temp3

(b)

Step 1:  
We start by calculating   .
Since .
Using the formula given in the Foundations section, we have
Step 2:  
Now, we have
We proceed by using trig substitution. Let . Then, .
So, we have
Step 3:  
Now, we use -substitution. Let . Then, .
So, the integral becomes
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have

Temp4

Final Answer:  
(a)  
(b)  

Return to Sample Exam