Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
(→Temp1) |
|||
Line 14: | Line 14: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: - | + | |'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is |
|- | |- | ||
| | | | ||
− | ::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math> | + | ::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math> |
|- | |- | ||
− | |'''2.''' <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C</math> | + | |'''2.''' <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.</math> |
|- | |- | ||
− | |'''3.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: - | + | |'''3.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by |
|- | |- | ||
| | | | ||
− | ::<math>S=\int 2\pi x ds</math> where <math>ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}</math> | + | ::<math style="vertical-align: -13px">S=\int 2\pi x\,ds</math>, where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math> |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
+ | |||
== Temp2 == | == Temp2 == | ||
'''(a)''' | '''(a)''' |
Revision as of 16:12, 25 February 2016
a) Find the length of the curve
- .
b) The curve
is rotated about the -axis. Find the area of the resulting surface.
Temp1
Foundations: |
---|
Recall: |
1. The formula for the length of a curve where is |
|
2. |
3. The surface area of a function rotated about the -axis is given by |
|
Solution:
Temp2
(a)
Step 1: |
---|
First, we calculate . |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have: |
|
Step 3: |
---|
Finally, |
|
Temp3
(b)
Step 1: |
---|
We start by calculating . |
Since . |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have |
We proceed by using trig substitution. Let . Then, . |
So, we have |
|
Step 3: |
---|
Now, we use -substitution. Let . Then, . |
So, the integral becomes |
|
Step 4: |
---|
We started with a definite integral. So, using Step 2 and 3, we have |
|
Temp4
Final Answer: |
---|
(a) |
(b) |