Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
(→Tempd) |
|||
Line 77: | Line 77: | ||
|The Fundamental Theorem of Calculus has two parts. | |The Fundamental Theorem of Calculus has two parts. | ||
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 1''' | + | |'''<u>The Fundamental Theorem of Calculus, Part 1</u>''' |
|- | |- | ||
− | |Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. | + | | Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | + | | Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. |
|} | |} | ||
Line 87: | Line 87: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 2''' | + | |'''<u>The Fundamental Theorem of Calculus, Part 2</u>''' |
|- | |- | ||
− | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. | + | | Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. |
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | + | | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|} | |} | ||
− | + | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!(d) | !(d) |
Revision as of 12:49, 25 February 2016
We would like to evaluate
a) Compute .
b) Find .
c) State the Fundamental Theorem of Calculus.
d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
Foundations: |
---|
How would you integrate ? |
|
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let . Then, . |
Since this is a definite integral, we need to change the bounds of integration. |
Plugging our values into the equation , we get and . |
Step 2: |
---|
So, we have |
|
(b)
Step 1: |
---|
From part (a), we have . |
Step 2: |
---|
If we take the derivative, we get , since is just a constant. |
(c)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |
---|
By the Fundamental Theorem of Calculus, Part 1, |
|
Final Answer: |
---|
(a) |
(b) |
(c) The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |