Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 94: Line 94:
 
|}
 
|}
 
== Tempd ==
 
== Tempd ==
'''(d)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!(d)    
 
|-
 
|-
 
|By the '''Fundamental Theorem of Calculus, Part 1''',  
 
|By the '''Fundamental Theorem of Calculus, Part 1''',  
 
|-
 
|-
 
|
 
|
::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math>
+
::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)\,=\,\sin(x^2)2x.</math>
 
|}
 
|}
  
Line 108: Line 106:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>f(x)=-\cos(x^2)+\cos(1)</math>
+
|'''(a)''' &nbsp;<math>f(x)=-\cos(x^2)+\cos(1)</math>
 
|-
 
|-
|'''(b)''' <math>f'(x)=\sin(x^2)2x</math>
+
|'''(b)''' &nbsp;<math>f'(x)=\sin(x^2)2x</math>
 
|-
 
|-
|'''(c)''' '''The Fundamental Theorem of Calculus, Part 1'''
+
|'''(c)''' &nbsp;'''<u>The Fundamental Theorem of Calculus, Part 1</u>'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
+
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.   
+
|&nbsp;&nbsp;Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.   
 
|-
 
|-
|'''The Fundamental Theorem of Calculus, Part 2'''
+
|'''<u>The Fundamental Theorem of Calculus, Part 2</u>'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
+
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
+
|&nbsp;&nbsp;Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|-
|'''(d)''' <math style="vertical-align: -5px">\sin(x^2)2x</math>
+
|'''(d)''' &nbsp;<math style="vertical-align: -5px">\sin(x^2)2x</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:48, 25 February 2016

We would like to evaluate

a) Compute .

b) Find .

c) State the Fundamental Theorem of Calculus.

d) Use the Fundamental Theorem of Calculus to compute   without first computing the integral.

d) Use the Fundamental Theorem of Calculus to compute   without first computing the integral.

Foundations:  
How would you integrate ?
You could use -substitution. Let . Then, .
So, we get .

Solution:

(a)

Step 1:  
We proceed using -substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
Plugging our values into the equation , we get and .
Step 2:  
So, we have


(b)

Step 1:  
From part (a), we have .
Step 2:  
If we take the derivative, we get , since is just a constant.

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .

Tempd

(d)  
By the Fundamental Theorem of Calculus, Part 1,
Final Answer:  
(a)  
(b)  
(c)  The Fundamental Theorem of Calculus, Part 1
  Let be continuous on and let .
  Then, is a differentiable function on and .
The Fundamental Theorem of Calculus, Part 2
  Let be continuous on and let be any antiderivative of .
  Then, .
(d)  

Return to Sample Exam