Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 34: | Line 34: | ||
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\ | \displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n}\\ | + | & = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 44: | Line 44: | ||
|- | |- | ||
| | | | ||
− | ::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math> | + | ::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}.</math> |
|} | |} | ||
Revision as of 11:30, 29 February 2016
Find the sum of the following series:
a)
b)
Foundations: |
---|
Recall: |
1. For a geometric series with , |
|
2. For a telescoping series, we find the sum by first looking at the partial sum |
|
Solution:
(a)
Step 1: |
---|
First, we write |
|
Step 2: |
---|
Since . So, |
|
(b)
Step 1: |
---|
This is a telescoping series. First, we find the partial sum of this series. |
Let . |
Then, . |
Step 2: |
---|
Thus, |
|
Final Answer: |
---|
(a) |
(b) |