Difference between revisions of "009A Sample Final 1, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 13: | Line 13: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x)</math> | + | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> |
|- | |- | ||
| | | | ||
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ||
|- | |- | ||
| − | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b]</math> | + | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> |
|- | |- | ||
| | | | ||
| − | ::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math> | + | ::we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math> |
|} | |} | ||
| Line 31: | Line 31: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x)</math> | + | |To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x).</math> |
|- | |- | ||
|Using the Product Rule, we have | |Using the Product Rule, we have | ||
| Line 39: | Line 39: | ||
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}}\\ | + | & = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 46: | Line 46: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0</math> | + | |Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0.</math> |
|- | |- | ||
| − | |Now, we need to set <math style="vertical-align: -5px">f'(x)=0</math> | + | |Now, we need to set <math style="vertical-align: -5px">f'(x)=0.</math> |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
| | | | ||
| − | ::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math> | + | ::<math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}.</math> |
|- | |- | ||
| − | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8</math> | + | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> |
|- | |- | ||
| − | |Solving, we get <math style="vertical-align: -1px">x=2</math> | + | |Solving, we get <math style="vertical-align: -1px">x=2.</math> |
|- | |- | ||
| − | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math> | + | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math> |
|} | |} | ||
| Line 69: | Line 69: | ||
|We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval. | |We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval. | ||
|- | |- | ||
| − | |Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0</math> | + | |Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0.</math> |
|} | |} | ||
| Line 77: | Line 77: | ||
|Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math> | |Comparing the values in Step 1 with the critical points in '''(a)''', the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math> | ||
|- | |- | ||
| − | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math> | + | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math> |
|} | |} | ||
| Line 85: | Line 85: | ||
|'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math> | |'''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math> | ||
|- | |- | ||
| − | |'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6)</math> | + | |'''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 13:13, 1 March 2016
Consider the following continuous function:
defined on the closed, bounded interval .
a) Find all the critical points for .
b) Determine the absolute maximum and absolute minimum values for on the interval .
| Foundations: |
|---|
| Recall: |
| 1. To find the critical points for we set and solve for |
|
| 2. To find the absolute maximum and minimum of on an interval |
|
Solution:
(a)
| Step 1: |
|---|
| To find the critical points, first we need to find |
| Using the Product Rule, we have |
|
|
| Step 2: |
|---|
| Notice is undefined when |
| Now, we need to set |
| So, we get |
|
|
| We cross multiply to get |
| Solving, we get |
| Thus, the critical points for are and |
(b)
| Step 1: |
|---|
| We need to compare the values of at the critical points and at the endpoints of the interval. |
| Using the equation given, we have and |
| Step 2: |
|---|
| Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is |
| and the absolute minimum value for is |
| Final Answer: |
|---|
| (a) and |
| (b) The absolute minimum value for is |