Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
& = & \displaystyle{|x|\lim_{n \rightarrow \infty}\frac{n+1}{n}}\\
 
& = & \displaystyle{|x|\lim_{n \rightarrow \infty}\frac{n+1}{n}}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|}\\
+
& = & \displaystyle{|x|.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 55: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Thus, we have <math style="vertical-align: -5px">|x|<1</math> and the radius of convergence of this series is <math style="vertical-align: -1px">1</math>.
+
|Thus, we have <math style="vertical-align: -5px">|x|<1</math> and the radius of convergence of this series is <math style="vertical-align: -1px">1.</math>
 
|}
 
|}
  
Line 63: Line 63:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|From part (a), we know the series converges inside the interval <math style="vertical-align: -5px">(-1,1)</math>.
+
|From part (a), we know the series converges inside the interval <math style="vertical-align: -5px">(-1,1).</math>
 
|-
 
|-
 
|Now, we need to check the endpoints of the interval for convergence.
 
|Now, we need to check the endpoints of the interval for convergence.
Line 73: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For <math style="vertical-align: -2px">x=1</math>, the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
+
|For <math style="vertical-align: -2px">x=1,</math> the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
 
|}
 
|}
  
Line 79: Line 79:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For <math style="vertical-align: -2px">x=-1</math>, the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
+
|For <math style="vertical-align: -2px">x=-1,</math> the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
 
|-
 
|-
|Thus, the interval of convergence is <math style="vertical-align: -5px">(-1,1)</math>.
+
|Thus, the interval of convergence is <math style="vertical-align: -5px">(-1,1).</math>
 
|}
 
|}
  
Line 89: Line 89:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Recall that we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1</math>.
+
|Recall that we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1.</math>
 
|-
 
|-
 
|Now, we take the derivative of both sides of the last equation to get
 
|Now, we take the derivative of both sides of the last equation to get
 
|-
 
|-
 
|
 
|
::<math>\frac{1}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}</math>.
+
::<math>\frac{1}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}.</math>
 
|}
 
|}
  
Line 102: Line 102:
 
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x</math>.  
 
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x</math>.  
 
|-
 
|-
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x)</math>.
+
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math>
 
|-
 
|-
|Thus, <math>f(x)=\frac{x}{(1-x)^2}</math>.
+
|Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math>
 
|}
 
|}
  

Revision as of 11:37, 29 February 2016

Let

a) Find the radius of convergence of the power series.

b) Determine the interval of convergence of the power series.

c) Obtain an explicit formula for the function .

Foundations:  
Recall:
1. Ratio Test Let be a series and . Then,
If , the series is absolutely convergent.
If , the series is divergent.
If , the test is inconclusive.
2. After you find the radius of convergence, you need to check the endpoints of your interval
for convergence since the Ratio Test is inconclusive when .

Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have
Step 2:  
Thus, we have and the radius of convergence of this series is

(b)

Step 1:  
From part (a), we know the series converges inside the interval
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For the series becomes , which diverges by the Divergence Test.
Step 3:  
For the series becomes , which diverges by the Divergence Test.
Thus, the interval of convergence is

(c)

Step 1:  
Recall that we have the geometric series formula for
Now, we take the derivative of both sides of the last equation to get
Step 2:  
Now, we multiply the last equation in Step 1 by .
So, we have
Thus,
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam