Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 17: | Line 17: | ||
|- | |- | ||
| | | | ||
− | ::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math> | + | ::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
|} | |} | ||
Line 39: | Line 39: | ||
|- | |- | ||
| | | | ||
− | ::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math> | + | ::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
|- | |- | ||
− | |Since <math style="vertical-align: -2px">r=1+\sin\theta</math> | + | |Since <math style="vertical-align: -2px">r=1+\sin\theta,</math> |
|- | |- | ||
| | | | ||
− | ::<math>\frac{dr}{d\theta}=\cos\theta</math> | + | ::<math>\frac{dr}{d\theta}=\cos\theta.</math> |
|- | |- | ||
− | |Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math> | + | |Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math> |
|} | |} | ||
Line 56: | Line 56: | ||
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ | \displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}\\ | + | & = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 65: | Line 65: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math> | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
|- | |- | ||
− | |So, first we need to find <math>\frac{dy'}{d\theta}</math> | + | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> |
|- | |- | ||
|We have | |We have | ||
Line 82: | Line 82: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2</math> | + | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math> |
|} | |} | ||
Line 88: | Line 88: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math> | + | | Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get |
|- | |- | ||
| | | | ||
− | ::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math> | + | ::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math> |
|- | |- | ||
| | | |
Revision as of 11:41, 29 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Compute .
c) Compute .
Foundations: |
---|
How do you calculate for a polar curve ? |
|
|
Solution:
(a)
Step 1: |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
|
Since |
|
Hence, |
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
since and |
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See Step 1 above for the graph. |
(b) |
(c) |