Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2</math>.
+
::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math>
 
|}
 
|}
  
Line 36: Line 36:
 
|-
 
|-
 
|
 
|
::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta</math>
+
::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta.</math>
|-
 
|
 
 
|}
 
|}
  
Line 44: Line 42:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta)</math>, we have
+
|Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta),</math> we have
 
|-
 
|-
 
|
 
|
Line 54: Line 52:
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}}\\
+
& = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 69: Line 67:
 
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\
 
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{3\pi}{2}}\\
+
& = & \displaystyle{\frac{3\pi}{2}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}

Revision as of 11:42, 29 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Find the area enclosed by the curve.


Foundations:  
The area under a polar curve is given by
for appropriate values of

Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for we have
Step 3:  
Lastly, we evaluate to get
Final Answer:  
(a) See Step 1 above.
(b)

Return to Sample Exam