Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 29: | Line 29: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} 4\sqrt{x+1}}\\ | + | \displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{4\sqrt{3+1}}\\ | & = & \displaystyle{4\sqrt{3+1}}\\ | ||
Line 44: | Line 44: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} x+5}\\ | + | \displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{3+5}\\ | & = & \displaystyle{3+5}\\ | ||
Line 72: | Line 72: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{(3+h)+5-8}{h}}\\ | + | \displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{h}{h}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{h}{h}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}1}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{1} | & = & \displaystyle{1} | ||
Line 89: | Line 89: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\ | + | \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ | + | & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ | & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ |
Revision as of 11:19, 24 February 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
We first calculate . We have |
|
Step 2: |
---|
Now, we calculate . We have |
|
Step 3: |
---|
Now, we calculate . We have |
|
Since is continuous. |
(b)
Step 1: |
---|
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Since , |
is differentiable at . |
Final Answer: |
---|
(a) Since is continuous. |
(b) Since , |
|