Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 22: | Line 22: | ||
|We begin by factoring the numerator. We have | |We begin by factoring the numerator. We have | ||
|- | |- | ||
− | |<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>. | + | | |
+ | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}</math>. | ||
|- | |- | ||
− | |So, we can cancel <math>x+3</math> in the numerator and denominator. Thus, we have | + | |So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have |
|- | |- | ||
− | |<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>. | + | | |
+ | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}</math>. | ||
|} | |} | ||
Line 32: | Line 34: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we can just plug in <math>x=-3</math> to get | + | |Now, we can just plug in <math style="vertical-align: 0px">x=-3</math> to get |
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | ::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9</math>. | ||
|} | |} | ||
Line 69: | Line 70: | ||
| We have | | We have | ||
|- | |- | ||
− | |<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>. | + | | |
+ | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>. | ||
|- | |- | ||
− | |Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math>\sqrt{x^2}=-x</math>. | + | |Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: -3px">\sqrt{x^2}=-x</math>. |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | |<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>. | + | | |
+ | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>. | ||
|} | |} | ||
Line 83: | Line 86: | ||
| We simplify to get | | We simplify to get | ||
|- | |- | ||
− | |<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math> | + | | |
+ | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math> | ||
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | |<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>. | + | | |
+ | ::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>. | ||
|} | |} | ||
Revision as of 14:38, 22 February 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Foundations: |
---|
Review L'Hopital's Rule |
Solution:
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
(b)
Step 1: |
---|
We proceed using L'Hopital's Rule. So, we have |
|
Step 2: |
---|
This limit is . |
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have . |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
So, we have |
|
Final Answer: |
---|
(a) . |
(b) |
(c) |