Difference between revisions of "009C Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 64: | Line 64: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math>c_n=\frac{f^{(n)}(a)}{n!} </math>, the Taylor polynomial of degree 4 of <math>f(x)=\cos^2x</math> is | + | |Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!} </math>, the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is |
| | | | ||
|- | |- | ||
− | |<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>. | + | | |
+ | ::<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>. | ||
|} | |} | ||
Line 73: | Line 74: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math> | + | |<math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:51, 22 February 2016
Find the Taylor polynomial of degree 4 of at .
Foundations: |
---|
Solution:
Step 1: | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||||||
| ||||||||||||||||||||||||
Step 2: | |
---|---|
Since , the Taylor polynomial of degree 4 of is | |
|
Final Answer: |
---|