Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 32: | Line 32: | ||
|First, recall we have | |First, recall we have | ||
|- | |- | ||
− | |<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>. | + | | |
+ | ::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>. | ||
|- | |- | ||
− | |Since <math>r=1+\sin\theta</math>, | + | |Since <math style="vertical-align: -2px">r=1+\sin\theta</math>, |
|- | |- | ||
− | |<math>\frac{dr}{d\theta}=\cos\theta</math>. | + | | |
+ | ::<math>\frac{dr}{d\theta}=\cos\theta</math>. | ||
|- | |- | ||
− | |Hence, <math>y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math> | + | |Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math> |
|} | |} | ||
Line 74: | Line 76: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |since <math>\sin^2\theta+\cos^2\theta=1</math> and <math>2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>. | + | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>. |
|} | |} | ||
Line 82: | Line 84: | ||
| Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get | | Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get | ||
|- | |- | ||
− | |<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>. | + | | |
+ | ::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>. | ||
|- | |- | ||
| | | | ||
Line 90: | Line 93: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' See | + | |'''(a)''' See Step 1 above for the graph. |
|- | |- | ||
|'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> | |'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
Revision as of 13:47, 22 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Compute .
c) Compute .
Foundations: |
---|
Review derivatives in polar coordinates |
Solution:
(a)
Step 1: |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
|
Since , |
|
Hence, |
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
We have . |
So, first we need to find . |
We have |
|
since and . |
Step 2: |
---|
Now, using the resulting formula for , we get |
|
Final Answer: |
---|
(a) See Step 1 above for the graph. |
(b) |
(c) |