Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
|First, recall we have
 
|First, recall we have
 
|-
 
|-
|<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
+
|
 +
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
 
|-
 
|-
|Since <math>r=1+\sin\theta</math>,  
+
|Since <math style="vertical-align: -2px">r=1+\sin\theta</math>,  
 
|-
 
|-
|<math>\frac{dr}{d\theta}=\cos\theta</math>.
+
|
 +
::<math>\frac{dr}{d\theta}=\cos\theta</math>.
 
|-
 
|-
|Hence, <math>y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math>
+
|Hence, <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math>
 
|}
 
|}
  
Line 74: Line 76:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math>\sin^2\theta+\cos^2\theta=1</math> and <math>2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>.
+
|since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>.
 
|}
 
|}
  
Line 82: Line 84:
 
| Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get  
 
| Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get  
 
|-
 
|-
|<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>.
+
|
 +
::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>.
 
|-
 
|-
 
|
 
|
Line 90: Line 93:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' See '''(a)''' above for the graph.
+
|'''(a)''' See Step 1 above for the graph.
 
|-
 
|-
 
|'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
 
|'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>

Revision as of 13:47, 22 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Compute .

c) Compute .

Foundations:  
Review derivatives in polar coordinates

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
.
Since ,
.
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have .
So, first we need to find .
We have
since and .
Step 2:  
Now, using the resulting formula for , we get
.
Final Answer:  
(a) See Step 1 above for the graph.
(b)
(c)

Return to Sample Exam