Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\
+
\displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\
 
&&\\
 
&&\\
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\

Revision as of 13:40, 22 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Find the area enclosed by the curve.


Foundations:  
Area under a polar curve

Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for , we have
Step 3:  
Lastly, we evaluate to get
Final Answer:  
(a) See Step 1 above.
(b)

Return to Sample Exam