Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Review <math>u</math>-substitution
+
|How would you integrate <math>\int e^{x^2}2x~dx</math>?
 +
|-
 +
|
 +
::You could use <math style="vertical-align: -1px">u</math>-substitution. Let <math style="vertical-align: 0px">u=x^2</math>. Then, <math style="vertical-align: 0px">du=2xdx</math>.
 +
|-
 +
|
 +
::So, we get <math style="vertical-align: -14px">\int e^u~du=e^u+C=e^{x^2}+C</math>.
 
|}
 
|}
  

Revision as of 11:14, 24 February 2016

We would like to evaluate

.

a) Compute .

b) Find .

c) State the fundamental theorem of calculus.

d) Use the fundamental theorem of calculus to compute without first computing the integral.

Foundations:  
How would you integrate ?
You could use -substitution. Let . Then, .
So, we get .

Solution:

(a)

Step 1:  
We proceed using -substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Step 2:  
So, we have

(b)

Step 1:  
From part (a), we have .
Step 2:  
If we take the derivative, we get .

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .

(d)

Step 1:  
By the Fundamental Theorem of Calculus, Part 1,
Final Answer:  
(a)
(b)
(c) The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(d)

Return to Sample Exam