Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 70: Line 70:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.  
+
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.  
 
|}
 
|}
  
Line 80: Line 80:
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
+
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|}
 
|}
  
Line 92: Line 92:
 
|By the '''Fundamental Theorem of Calculus, Part 1''',  
 
|By the '''Fundamental Theorem of Calculus, Part 1''',  
 
|-
 
|-
|<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math>
+
|
 +
::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math>
 
|}
 
|}
  
Line 104: Line 105:
 
|'''(c)''' '''The Fundamental Theorem of Calculus, Part 1'''
 
|'''(c)''' '''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.  
+
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>.
+
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|-
|'''(d)''' <math>\sin(x^2)2x</math>
+
|'''(d)''' <math style="vertical-align: -5px">\sin(x^2)2x</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:10, 22 February 2016

We would like to evaluate

.

a) Compute .

b) Find .

c) State the fundamental theorem of calculus.

d) Use the fundamental theorem of calculus to compute without first computing the integral.

Foundations:  
Review -substitution

Solution:

(a)

Step 1:  
We proceed using -substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Step 2:  
So, we have

(b)

Step 1:  
From part (a), we have .
Step 2:  
If we take the derivative, we get .

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .

(d)

Step 1:  
By the Fundamental Theorem of Calculus, Part 1,
Final Answer:  
(a)
(b)
(c) The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(d)

Return to Sample Exam