Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 70: | Line 70: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
− | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>. | + | |Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
|- | |- | ||
− | |Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>. | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. |
|} | |} | ||
Line 80: | Line 80: | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
− | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>. | + | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. |
|- | |- | ||
− | |Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|} | |} | ||
Line 92: | Line 92: | ||
|By the '''Fundamental Theorem of Calculus, Part 1''', | |By the '''Fundamental Theorem of Calculus, Part 1''', | ||
|- | |- | ||
− | |<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math> | + | | |
+ | ::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math> | ||
|} | |} | ||
Line 104: | Line 105: | ||
|'''(c)''' '''The Fundamental Theorem of Calculus, Part 1''' | |'''(c)''' '''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
− | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>. | + | |Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
|- | |- | ||
− | |Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>. | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
− | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>. | + | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. |
|- | |- | ||
− | |Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>. | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|- | |- | ||
− | |'''(d)''' <math>\sin(x^2)2x</math> | + | |'''(d)''' <math style="vertical-align: -5px">\sin(x^2)2x</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:10, 22 February 2016
We would like to evaluate
- .
a) Compute .
b) Find .
c) State the fundamental theorem of calculus.
d) Use the fundamental theorem of calculus to compute without first computing the integral.
Foundations: |
---|
Review -substitution |
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let . Then, . |
Since this is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Step 2: |
---|
So, we have |
|
(b)
Step 1: |
---|
From part (a), we have . |
Step 2: |
---|
If we take the derivative, we get . |
(c)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d)
Step 1: |
---|
By the Fundamental Theorem of Calculus, Part 1, |
|
Final Answer: |
---|
(a) |
(b) |
(c) The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |