Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 70: Line 70:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we add and subtract <math>x</math> from the numerator.  
+
|First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator.  
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 89: Line 89:
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|-
 
|-
|Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
+
|Since <math style="vertical-align: -5px">2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
 
|-
 
|-
|Multiplying both sides of the last equation by <math>x(2x+1)</math>,  
+
|Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1)</math>,  
 
|-
 
|-
|we get <math>1-x=A(2x+1)+Bx</math>.
+
|we get <math style="vertical-align: -5px">1-x=A(2x+1)+Bx</math>.
 
|-
 
|-
|If we let <math>x=0</math>, the last equation becomes <math>1=A</math>.
+
|If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>.
 
|-
 
|-
|If we let <math>x=-\frac{1}{2}</math>, then we get <math>\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math>B=-3</math>.
+
|If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get <math style="vertical-align: -14px">\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>.
 
|-
 
|-
 
|So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
 
|So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
Line 118: Line 118:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|For the final remaining integral, we use <math>u</math>-substitution.  
+
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math>u=2x+1</math>. Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx</math>.
+
|Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx</math>.
 
|-
 
|-
 
|Thus, our final integral becomes
 
|Thus, our final integral becomes
Line 135: Line 135:
 
|Therefore, the final answer is
 
|Therefore, the final answer is
 
|-
 
|-
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
+
|
 +
::<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
 
|}
 
|}
 
'''(c)'''
 
'''(c)'''

Revision as of 11:50, 22 February 2016

Compute the following integrals.

a)

b)

c)


Foundations:  
Review -substitution
Integration by parts
Partial fraction decomposition
Trig identities

Solution:

(a)

Step 1:  
We first distribute to get
.
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by ,
we get .
If we let , the last equation becomes .
If we let , then we get . Thus, .
So, in summation, we have .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and .
Thus, our final integral becomes
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get .
If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, .
So we have
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam