Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 70: | Line 70: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we add and subtract <math>x</math> from the numerator. | + | |First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator. |
|- | |- | ||
|So, we have | |So, we have | ||
Line 89: | Line 89: | ||
|Now, we need to use partial fraction decomposition for the second integral. | |Now, we need to use partial fraction decomposition for the second integral. | ||
|- | |- | ||
− | |Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>. | + | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>. |
|- | |- | ||
− | |Multiplying both sides of the last equation by <math>x(2x+1)</math>, | + | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1)</math>, |
|- | |- | ||
− | |we get <math>1-x=A(2x+1)+Bx</math>. | + | |we get <math style="vertical-align: -5px">1-x=A(2x+1)+Bx</math>. |
|- | |- | ||
− | |If we let <math>x=0</math>, the last equation becomes <math>1=A</math>. | + | |If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>. |
|- | |- | ||
− | |If we let <math>x=-\frac{1}{2}</math>, then we get <math>\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math>B=-3</math>. | + | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get <math style="vertical-align: -14px">\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>. |
|- | |- | ||
|So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>. | |So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>. | ||
Line 118: | Line 118: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |For the final remaining integral, we use <math>u</math>-substitution. | + | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=2x+1</math>. Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx</math>. | + | |Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx</math>. |
|- | |- | ||
|Thus, our final integral becomes | |Thus, our final integral becomes | ||
Line 135: | Line 135: | ||
|Therefore, the final answer is | |Therefore, the final answer is | ||
|- | |- | ||
− | |<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> | + | | |
+ | ::<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> | ||
|} | |} | ||
'''(c)''' | '''(c)''' |
Revision as of 11:50, 22 February 2016
Compute the following integrals.
a)
b)
c)
Foundations: |
---|
Review -substitution |
Integration by parts |
Partial fraction decomposition |
Trig identities |
Solution:
(a)
Step 1: |
---|
We first distribute to get |
|
Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
Let and . Then, and . |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since , we let . |
Multiplying both sides of the last equation by , |
we get . |
If we let , the last equation becomes . |
If we let , then we get . Thus, . |
So, in summation, we have . |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let . Then, and . |
Thus, our final integral becomes |
|
Therefore, the final answer is |
|
(c)
Step 1: |
---|
First, we write . |
Using the identity , we get . |
If we use this identity, we have |
. |
Step 2: |
---|
Now, we proceed by -substitution. Let . Then, . |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |