Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 83: | Line 83: | ||
|First, we write <math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}</math>. | |First, we write <math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}</math>. | ||
|- | |- | ||
− | |Now, we proceed by <math>u</math>-substitution. We let <math>u=4-x</math>. Then, <math>du=-dx</math>. | + | |Now, we proceed by <math style="vertical-align: 0px">u</math>-substitution. We let <math style="vertical-align: -1px">u=4-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>. |
|- | |- | ||
|Since the integral is a definite integral, we need to change the bounds of integration. | |Since the integral is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
− | |Plugging in our values into the equation <math>u=4-x</math>, we get <math>u_1=4-1=3</math> and <math>u_2=4-a</math>. | + | |Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math> and <math style="vertical-align: -3px">u_2=4-a</math>. |
|- | |- | ||
|Thus, the integral becomes | |Thus, the integral becomes | ||
|- | |- | ||
− | |<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-du}{\sqrt{u}}</math>. | + | | |
+ | ::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-du}{\sqrt{u}}</math>. | ||
|} | |} | ||
Line 112: | Line 113: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>1</math> | + | |'''(a)''' <math style="vertical-align: -3px">1</math> |
|- | |- | ||
− | |'''(b)''' <math>2\sqrt{3}</math> | + | |'''(b)''' <math style="vertical-align: -4px">2\sqrt{3}</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |