Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -4px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is  
+
|'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -4px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is  
 
|-
 
|-
|<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>.  
+
|
 +
::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>.  
 
|-
 
|-
|Know the integral of <math>\sec x</math>
+
|'''2.''' Recall that <math>\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C</math>.
 
|-
 
|-
|The surface area <math>S</math> of a function <math>y=f(x)</math> rotated about the <math>y</math>-axis is given by  
+
|'''3.''' The surface area <math>S</math> of a function <math>y=f(x)</math> rotated about the <math>y</math>-axis is given by  
 
|-
 
|-
|<math>S=\int 2\pi x ds</math> where <math>ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}</math>.
+
|
 +
::<math>S=\int 2\pi x ds</math> where <math>ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}</math>.
 
|}
 
|}
  

Revision as of 10:55, 22 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
1. The formula for the length of a curve where is
.
2. Recall that .
3. The surface area of a function rotated about the -axis is given by
where .

Solution:

(a)

Step 1:  
First, we calculate .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:
Step 3:  
Finally,

(b)

Step 1:  
We start by calculating .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have
We proceed by using trig substitution. Let . Then, .
So, we have
Step 3:  
Now, we use -substitution. Let . Then, .
So, the integral becomes
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have
Final Answer:  
(a)
(b)

Return to Sample Exam